Exploring recognition network representations for efficient speech inference on highly parallel platforms
نویسندگان
چکیده
The emergence of highly parallel computing platforms is enabling new trade-offs in algorithm design for automatic speech recognition. It naturally motivates the following investigation: do the most computationally efficient sequential algorithms lead to the most computationally efficient parallel algorithms? In this paper we explore two contending recognition network representations for speech inference engines: the linear lexical model (LLM) and the weighted finite state transducer (WFST). We demonstrate that while an inference engine using the simpler LLM representation evaluates 22×more transitions per second than the advanced WFST representation, the simple structure of the LLM representation allows 4.7-6.4× faster evaluation and 53-65× faster operands gathering for each state transition. We use the 5k Wall Street Journal corpus to experiment on the NVIDIA GTX480 (Fermi) and the NVIDIA GTX285 Graphics Processing Units (GPUs), and illustrate that the performance of a speech inference engine based on the LLM representation is competitive with the WFST representation on highly parallel computing platforms.
منابع مشابه
شبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملA fully data parallel WFST-based large vocabulary continuous speech recognition on a graphics processing unit
Tremendous compute throughput is becoming available in personal desktop and laptop systems through the use of graphics processing units (GPUs). However, exploiting this resource requires re-architecting an application to fit a data parallel programming model. The complex graph traversal routines in the inference process for large vocabulary continuous speech recognition (LVCSR) have been consid...
متن کاملToward Computation and Memory Efficient Neural Network Acoustic Models with Binary Weights and Activations
Neural network acoustic models have significantly advanced state of the art speech recognition over the past few years. However, they are usually computationally expensive due to the large number of matrix-vector multiplications and nonlinearity operations. Neural network models also require significant amounts of memory for inference because of the large model size. For these two reasons, it i...
متن کاملBayesian network structures and inference techniques for automatic speech recognition
This paper describes the theory and implementation of Bayesian networks in the context of automatic speech recognition. Bayesian networks provide a succinct and expressive graphical language for factoring joint probability distributions, and we begin by presenting the structures that are appropriate for doing speech recognition training and decoding. This approach is notable because it expresse...
متن کاملScalable Parallelization of Automatic Speech Recognition
Automatic speech recognition (ASR) allows multimedia content to be transcribed from acoustic waveforms into word sequences. It is an exemplar of a class of machine learning applications where increasing compute capability is enabling new industries such as automatic speech analytics. Automatic speech analytics help customer service call centers search through recorded content, track service qua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010